| Function | Rewrite as \( y = ax^n + bx^m \) |
|---|---|
| 1. \( y = \frac{4}{x^2} \) | \( y = 4x^{-2} \) |
| 2. \( y = 3\sqrt{x} \) | \( y = \) |
| 3. \( y = \frac{1}{2x} + x^2 \) | \( y = \) |
| 4. \( y = \frac{6}{\sqrt{x}} - x \) | \( y = \) |
| 5. \( y = \frac{x^3 + 4}{x} \) | \( y = \) |
1. \( \frac{dy}{dx} \):
2. Tangent Grad (\( m_T \)) at \( x=2 \):
3. Normal Grad (\( m_N = -1/m_T \)):
1. \( \frac{dy}{dx} \):
2. Tangent Grad (\( m_T \)) at \( x=9 \):
3. Normal Grad (\( m_N \)):
Formula: \( y - y_1 = m(x - x_1) \)
1. Coords: If \( x = 1 \), \( y_1 = \)?
2. Slope: \( \frac{dy}{dx} \) at \( x=1 \)?
3. Line Equation (Rearrange to \( ax+by+c=0 \)):
1. Differentiate \( y = x^2 - 8x^{-1} \):
2. Tangent \( m_T \) at \( x=2 \):
3. Normal \( m_N \):
4. Equation of Normal passing through \( (2,0) \):
Prompt: "Find the equation of the normal to \( y = x^2 - \frac{8}{x} \) at \( x=2 \)."