🎯 Welcome to Inverse Trigonometry!
Let's explore special angles and their inverse trigonometric values step by step.
📚 What You'll Learn:
- ✅ Special angles: 0°, 30°, 45°, 60°, 90°
- ✅ Trigonometric values for these angles
- ✅ Inverse trigonometry concepts
- ✅ Interactive calculations
- ✅ Practice exercises
🚀 Interactive Learning: You'll input numbers and see results on every slide!
Ready to start your journey? Click Next to begin!
📐 Understanding Special Angles
Special angles have exact trigonometric values. Let's explore them:
🧮 Try Converting!
Convert degrees to radians:
📊 Trigonometric Values Table
| Angle | \(\sin\theta\) | \(\cos\theta\) | \(\tan\theta\) |
|---|---|---|---|
| 0° | \(0\) | \(1\) | \(0\) |
| 30° | \(\frac{1}{2}\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{\sqrt{3}}{3}\) |
| 45° | \(\frac{\sqrt{2}}{2}\) | \(\frac{\sqrt{2}}{2}\) | \(1\) |
| 60° | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{2}\) | \(\sqrt{3}\) |
| 90° | \(1\) | \(0\) | undefined |
🎯 Test Your Knowledge!
Enter an angle to see its trigonometric values:
🔄 What is Inverse Trigonometry?
Inverse trigonometric functions work backwards - they find the angle when given the trigonometric value.
\(\arcsin(x)\)
If \(\sin\theta = x\), then \(\theta = \arcsin(x)\)
Range: \([-90°, 90°]\)
Domain: \([-1, 1]\)
\(\arccos(x)\)
If \(\cos\theta = x\), then \(\theta = \arccos(x)\)
Range: \([0°, 180°]\)
Domain: \([-1, 1]\)
\(\arctan(x)\)
If \(\tan\theta = x\), then \(\theta = \arctan(x)\)
Range: \((-90°, 90°)\)
Domain: All real numbers
🧪 Try an Example!
Let's find: What angle has \(\sin\theta = \frac{1}{2}\)?
Hint: Look at the table from the previous slide!
📐 Interactive Arcsin Calculator
\(\arcsin(x)\) - Arcsine Function
The arcsine function finds the angle whose sine is the given value.
Key Points:
- • Input must be between -1 and 1
- • Output is between -90° and 90°
- • \(\arcsin(\frac{1}{2}) = 30°\)
- • \(\arcsin(\frac{\sqrt{2}}{2}) = 45°\)
- • \(\arcsin(\frac{\sqrt{3}}{2}) = 60°\)
🧮 Try Different Values!
💡 Try These Values:
📐 Interactive Arccos Calculator
\(\arccos(x)\) - Arccosine Function
The arccosine function finds the angle whose cosine is the given value.
Key Points:
- • Input must be between -1 and 1
- • Output is between 0° and 180°
- • \(\arccos(\frac{\sqrt{3}}{2}) = 30°\)
- • \(\arccos(\frac{\sqrt{2}}{2}) = 45°\)
- • \(\arccos(\frac{1}{2}) = 60°\)
- • \(\arccos(0) = 90°\)
🧮 Try Different Values!
💡 Try These Values:
📐 Interactive Arctan Calculator
\(\arctan(x)\) - Arctangent Function
The arctangent function finds the angle whose tangent is the given value.
Key Points:
- • Input can be any real number
- • Output is between -90° and 90°
- • \(\arctan(\frac{\sqrt{3}}{3}) = 30°\)
- • \(\arctan(1) = 45°\)
- • \(\arctan(\sqrt{3}) = 60°\)
🧮 Try Different Values!
💡 Try These Values:
🎯 Final Challenge Quiz
Question 1: Calculate \(\arcsin(\frac{1}{2})\)
Question 2: Calculate \(\arccos(\frac{\sqrt{2}}{2})\)
Question 3: Calculate \(\arctan(\sqrt{3})\)
🎉 Quiz Complete!
Score: 0/3
Great job learning inverse trigonometry!